
Introduction to Computers for
Engineers:

Recitation #2

Learning Objectives

u Learn how to write functions in MATLAB

u Understand that functions are templates that can be modified and
reused to suit your needs

u Understand that functions are used by calling them

u Understand that you are finished writing a function after you have
tested it

u Understand that functions can be used together within other
programs to perform larger tasks

Activity 1: Function warm-up
u Write a function with 2 inputs and 2 outputs named math

u Remember that the name of the function and the filename must both be math

u Inputs:

u num1: Double

u num2: Double

u Outputs:

u difference: num1-num2

u sum: num1+num2

Run your function to make sure it works!

u Questions:

u How do you call a function?

u Are there any similarities between the function call and the function header?

u What does it mean to have an input? Assign an output value? Do we need to print anything or
ask the user for anything?

Activity 1: Solutions

Question: What if you wanted to run the function inside the script?

Remember: now the script has to have a different name than the function!

Activity 2: More functions
u Write a function with 2 inputs and 2 outputs named math2

u Inputs:

u num1: Double

u num2: Double

u The outputs can be any mathematical operation you want, example:

u recitation_sucks: (num_1 + num_2) * (num_1^2)

u im_lost: (num_1*num_2) + (num_1 / num_2)

u In your group:

u Create test cases (i.e. run it with different inputs to make sure that it
works)

u Discuss: What do you think an appropriate number of test cases is for a
program like this?

u Discuss: Why might functions be useful to write instead of plain scripts?

Activity 2: Solutions

Activity 3: Calling multiple functions
(Example)
u Suppose I wanted to add all of the results from the function math and math2

u This works as long as all of the MATLAB functions are located in the same directory!

Activity 3: Calling multiple functions

u We are going to create a GPA calculator!

u Let’s first create the function totalCredits():

u total_creds = totalCredits(credit_array)

u The purpose of function totalCredits() is to compute the total number of credits
you’ve taken. You can use the built-in MATLAB function sum().

u Example:

u credit_array = [3, 4, 3, 1]

u total_creds = sum(credit_array)

u Make sure that your function works!

Note:
A = 4.0
B+ = 3.5
B = 3.0
C+ = 2.5
C = 2.0
D = 1.0

Activity 3: Calling multiple functions

u We are going to create a GPA calculator!

u Now create the function totalPoints():

u total_points = totalPoints(credit_array, grade_array)

u NOTE: credit_array and grade_array should align.

u Example:

u credit_array = [3, 4, 3, 1]

u grade_array = [4.0, 3.5, 2.5, 0.0]

u individual_points = credit_array .* grade_array

u total_points = sum(individual_points)

u NOTE: .* denotes element-wise multiplication of arrays!

u Make sure that your function works!

Note:
A = 4.0
B+ = 3.5
B = 3.0
C+ = 2.5
C = 2.0
D = 1.0

Activity 3: Calling multiple functions

u We are going to create a GPA calculator!

u Now create the function computeGPA():

u gpa = computeGPA(credit_array, grade_array)

u NOTE: credit_array and grade_array should align.

u This function should output the result of dividing the output of totalPoints()
by the output of totalCredits()

u gpa = totalPoints() / totalCredits()

u Make sure that your function works!

u Question: Why do you think creating a function to compute the
GPA is better than just writing a script?

Note:
A = 4.0
B+ = 3.5
B = 3.0
C+ = 2.5
C = 2.0
D = 1.0

Activity 3: Solution

Activity 3: More on functions

u How would you modify the computeGPA() function so
that it can compute your GPA for two semesters?

u Hint: Increase your number of input arrays to 4 and
re-use your functions!

Activity 4: Make your own sequence of
functions!

u Think of your own example where you think
leveraging multiple functions would be useful.

u Discuss with your group and implement it
together!

